اولویت‌بندی عوامل موثر بر وقوع زمین‌لغزش و پهنه‌بندی خطر آن با استفاده از ‏تئوری احتمالاتی دمپستر شفر، مطالعه موردی: حوضه ونک سمیرم، استان ‏اصفهان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم انسانی، دانشگاه تربیت مدرس

2 استادیار، بخش تحقیقات آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ‏اصفهان، ایران

چکیده

زمین­‌لغزش‌­ها از مهمترین رخدادهای طبیعی هستند و اتخاذ استراتژی کاهش خسارات و حفظ منابع طبیعی و انسانی در این رابطه ضروری می‌­باشد. اهداف این پژوهش، تشخیص عوامل موثر در زمین‌لغزش، پهنه‌­بندی و ارزیابی رخداد این پدیده با استفاده از تئوری دمپستر شفر و تکنیک GIS می‌­باشد. در این پژوهش، بر اساس تلفیق نقشه لغزش با نقشه‌های عوامل موثر مانند مقدار شیب، فاصله از جاده، تراکم آبراهه، ارتفاع، بارش، کاربری اراضی، فاصله از گسل، جهت شیب و لیتولوژی تحلیل خطر انجام می­‌گیرد. در نهایت احتمال رخداد زمین­‌لغزش­‌ها از خطر خیلی زیاد تا خطر خیلی کم طبقه‌­بندی شد. از کل مساحت منطقه (1870516)، 12.68 درصد از مساحت (237259) در رده خیلی زیاد، 12.78 درصد از مساحت (239045) در رده زیاد، 21.24 درصد از مساحت (397316) در رده متوسط، 29.33 درصد از مساحت (548649) در رده کم و 23.96 درصد از مساحت (448247) در رده خیلی کم قرار گرفته‌­اند. مدل با استفاده از یک سوم نقاط لغزشی، نسبت فراوانی (FR)، شاخص SCAI و منحنی ROC مورد ارزیابی و اعتبارسنجی قرار گرفت. نتایج نشان داد، نسبت فراوانی پیکسل­‌ها (FR) و شاخص سطح سلول هسته (SCAI) مبین صحت مناسب طبقه­‌بندی در پنج طبقه خطر می­‌باشد. همچنین، دقت نمودار ویژگی عملگر گیرنده (ROC) مدل دمپستر شفر با سطح زیر منحنی (AUC) 73 درصد، نماینده همبستگی بالا بین نقشه خطر تهیه شده و نقشه پراکنش زمین‌­لغزش و ارزیابی خوب مدل می‌باشد. نتایج این پژوهش به­‌عنوان اطلاعات پایه­‌ای برای مدیریت و برنامه­‌ریزی محیطی می­تواند مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of Effective Factors on Landslide Occurrence and its Hazard ‎Zonation Using Dempster-Shafer theory, Case study: Vanak Basin, Isfahan ‎Province‎

نویسندگان [English]

  • Alireza Arabameri 1
  • Kourosh Shirani 2
1 PhD Student, Faculty of Humanities, Tarbiat Modares University, Iran
2 Assistant Professor, Agricultural and Natural Resources Research Center, Isfahan, Iran
چکیده [English]

Landslides are major natural hazards and adopting a regional strategy is very necessary to reduce its damages and maintains natural and human resources. The purposes of this study are the recognition of effective factors in landslide and the zonation and assessment of in terms of the occurrence of this phenomenon using the Dempster-Shafer theory and GIS technique. In this research with integration of Landslide map and effective factors maps such as lithology, land use, slope angle, slope aspect, elevation, precipitation, distance to fault, distance to road, and density of drainage were done analysis of hazard.  Finally, landslide occurrence zones were recognized from very low risk to very high risk.  Total area of region is 1780516, 12/66 percentage of area (237259) existed in very high risk,12/78 percentage of area (239045) existed in high resk, 21/24 percentage of area (397316) existed in medium,29/33 percentage of area (548649) existed in low and 23/96 percentage of area (448247) existed in very low class. Model evaluated using one to third of landslide points, Frequency Ratio (FR), Seed Cell Area Index (SCAI) and ROC. The results show that Frequency Ratio and Seed Cell Area Index indicate appropriate accuracy of classification to 5 class. Also accuracy of ROC  in  Dempster-Shafer theory with AUC (%73) indicate high correlation between Risk map and Landslide hazard  map and good evaluation of model.The results of these studies can be used as fundamental information by environmental managers and planners.

کلیدواژه‌ها [English]

  • Dempster-Shafer theory
  • Landslide
  • Vanak Basin
  • zonation
  1. Ayalew, L. and H. Ymagishi. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakud-Yahiko Mountains, Central Japan. Geomorphology, 65: 15-31.
  2. Bui, H.B., Q. Nguyen and V.T. Nguyen. 2008. GIS-based weight of evidence modeling for landslide susceptibilitymapping at Jaechon area, Korea. International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, 4 pages.
  3. Blöchl, A. and B. Braun. 2005. Economic assessment of landslide risks in the Swabian Alb, Germany –research framework and first results of homeowners and experts surveys. Natural Hazards and Earth System Sciences, 5: 389-396.
  4. Bui, D.T., B. Pradhan, O. Lofman, I. Revhaug and O.B. Dick. 2012. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, doi:10.1016/j.cageo,2011.10.031.
  5. Can, T., H.A. Nefeslioglu, C. Gokceoglu, H. Sonmez and Y. Duman. 2005. Susceptibility assessments of shallow earth flows triggered by heavy rainfall at three catchment's by logistic regression analysis. Geomorphology, 82: 250-271.
  6. Chau, K.T. and J.E. Chan. 2005. Regional bias of landslide data in generating susceptibility maps using logistic regression for Hong Kong Island. Landslides, 12: 280-290.
  7. Chauhan, S., M. Sharma, M.K. Arora and N.K. Gupta. 2010. Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth observation and Geoinformation, 12: 340-350.
  8. Constantin, M., M. Bednarik, M.C. Jurchescu and M. Vlaicu. 2010. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Science, DOI 10.1007/s12665-010-0724-y: 10.
  9. Dai, F.C. and C.F. Lee. 2002. Landslide characteristics and slop instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 31:181-216.

10. Dai, F.C. and C.F. Lee. 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Canadian Geotechnical Journal, 38: 911–923.

11. Dempster, A.P. 1967. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38: 325–339.

12. Denoeux, T. 2000.  A neural network classifier based on Dempster–Shafer theory. IEEE transactions on systems, man and cybernetics. System and Humans, 30(2): 131–150.

13. Fatemi Aghda, S.M., J. Ghayoumian, M. Teshnehlab and A. Ashghali Farahani. 2005. Assessment of landslide hazard by using fuzzy logic (case study: Rudbar area). Journal of Science, 1: 43-64.

14. Greco, R., M. Sorriso–Valvo and E. Catalano. 2007. Logistic regression analysis in the evaluation of mass movement's susceptibility, case study: Calabria, Italy. Engineering Geology, 89: 47-66.

15. Gorsevski, P.V., P.E. Gessler, J. Boll, W.J.  Elliot and R.B. Foltz. 2006. Spatially and temporally distributed of landslide susceptibility. Geomorphology, 80: 178- 198.

16. Izadi, Z. 2007. Risk zonation of landslide occurrence using statistical methods (case study: Fereydonshahr Basin(. AM. Thesis, university of Isfahan, 125 pages (in Persian).

17. Kayastha, P., M.R. Dhital and F.D. Smedt. 2012. Landslide susceptibility mapping using the weight of evidence method in the Tinau Watershed, Nepal. Nat Hazards, 63: 479-498.

18. Kohlas, J. and P.A. Monney. 1995. A mathematical theory of Hints. An approach to the Dempster-Shafer theory of evidence. Springer-Verlag, Berlin.

19. Komac, M. 2006. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in Perialpine, Slovenia. Geomorphology, 74(1-4): 17-28.

20. Lan, H.X., C.H. Zhou, L.J. Wang and H.J. Zhang. 2004. Landslide watershed, Yunnan, China. Engineering Geology, 76: 101-128.

21. Lee, S. and J. Choi. 2004. Landslide susceptibility mapping using GIS and the weight of evidence model. International Journal of Geographical Information Science, 18(8): 789- 814.

22. Lee, S. and T. Sambath. 2006. Landslide susceptibility mapping in the Damrei Romel area. Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50: 847-855.

23. Mathew, J., V.K. Jha and G.S. Rawat. 2007. Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5): 628-638.

24. Nefeslioglu, H.A., T.Y. Duman and S. Durmaz. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology, 94: 401-418.

25. Ohlamcher, G.C. and J.C. Davis. 2003. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69: 331-343.

26. Ownegh, M. 2002. Landslide hazard and risk assessment in the southern Sunbirds of Newcastle. Sabbatical research. University of Newcastle, Australia, 2: 85.

27. Pourghasemi, H.R., S.M. Fatemi aghda and M. Mohammadi. 2007. Introduction of fuzzy methods and its application in Risk zonation of landslide. Collection of articles in natural resources and sustainable development in southern of Caspian Sea, 800-850 (in Persian).

28. Shafer, G. 1990.  Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning, 3: 1-40.

29. Shahabi, M.A. and S. Sadodin. 2009. Beysian decision network for forecasting of effects of managemental works on wheat lands in Golestan Province. Ghorgan, Iran (in Persian).

30. Shafer, G. 1976. A mathematical theory of evidence. Princeton University Press, 254 pages.

31. Shirani, K., A. Safe and A. Nasr. 2013. Analysis of effective factors of massive movement basis on risk zonation of landslide. Earth Science Journal, 89: 3-10 (in Persian).

32. Smets, P.H. and R. Kennes. 1994. The transferable belief model. Artificial Intelligence, 66: 191–243.

33. Smets, P.H. 2004. Analyzing the combination of conflicting belief functions. Artificial Intelligence, 170(2006): 909–924.

34. Smets P.H. 1990. The combination of evidence in the transferable Belief Model. Artificial Intelligence, 170(11): 909–924.

35. Suzen, M.L. and V. Doyuran. 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu Catchment, Turkey. Engineering Geology, 71: 303–352.

36. Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science, 240: 1285-1293.

37. Schocken, S. and R.A. Hummel. 1993. On the use of the Dempster–Shafer model in information indexing and retrieval applications. International Journal of Man–Machine Studies, 39(5): 843–879.

38. Yalcin, A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72: 1-12.

39. Yager, R.R. 2001. Dempster–Shafer belief structures with interval valued focal weights. International Journal of Intelligent Systems, 16: 497–512.

40. Yilmaz, C., T. Topal and M.L. Suzen. 2012 .GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environmental Earth Sciences, 65: 2161–2178.

41. Zhu, C. and X. Wang. 2009. Landslide susceptibility mapping: a comparison of information and weights-of evidence methods in Three Gorges Area. International Conference on Environmental Science and Information Application Technology, DOI 10.1109/ESIAT.2009. 187: 342-346.