با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

به‌دلیل کمبود اطلاعات در اکثر حوزه‌­های آبخیز، بسیاری از محققین برای مطالعات هیدرولوژیکی و سیل­‌خیزی به استفاده از تجزیه و تحلیل‌­های مکانی در سیستم اطلاعات جغرافیایی روی آورده‌­اند. پژوهش حاضر به‌منظور تهیه نقشه‌های احتمال و حساسیت سیل با استفاده از روش نسبت فراوانی، از پارامتر­های طبقات ارتفاعی، درصد شیب، انحنای زمین، شاخص رطوبت توپوگرافی، توان آبراهه، میانگین بارندگی، فاصله از رودخانه، سنگ‌­شناسی، نوع خاک و کاربری اراضی در حوزه آبخیز پل­ دوآب شازند انجام شد. ابتدا نقشه رقومی تمامی پارامتر­ها با استفاده از نرم‌­افزارهای Arc GIS 10.1 و SAGA GIS 2 با فرمت رستری تهیه شدند. برای تهیه نقشه کاربری اراضی از تصویر ماهواره IRS-1C و نرم‌افزار ENVI 4.8 و الگوریتم حداکثر احتمال استفاده شد. سپس موقعیت جغرافیایی 95 نقطه سیل­‌گیر در منطقه بر اساس اطلاعات سیلاب­‌های اردیبهشت ماه 1382، اردیبهشت ماه 1383 و اسفند ماه 1383 تهیه شد. نقاط به‌صورت تصادفی به گروه‌­هایی متشکل از 67 نقطه (70 درصد) و 28 نقطه (30 درصد) به‌ترتیب برای واسنجی و اعتبار­سنجی تقسیم شدند. مجموعه نقاط گروه واسنجی به‌عنوان متغیر وابسته و پارامتر­های تاثیرگذار بر سیل به‌عنوان متغیر­ مستقل به روش نسبت فراوانی معرفی شدند. سپس احتمال رخداد سیل برای هر طبقه از هر پارامتر­ها محاسبه شد. در نهایت وزن­‌های به‌دست­ آمده برای هر طبقه در سیستم اطلاعات جغرافیایی (GIS) در لایه‌­های مربوطه اعمال شده و با استفاده از توابع روی­‌هم­‌گذاری، نقشه­‌های حساسیت و احتمال سیل منطقه مورد مطالعه به‌دست آمد. بر اساس نقشه پتانسیل، منطقه به پنج طبقه با حساسیت خیلی زیاد، زیاد، متوسط، کم و خیلی کم تقسیم شد. نتایج هیستوگرام ارزیابی روش نسبت فراوانی نشان داد که احتمال حضور نقاط سیل­‌گیر گروه اعتبارسنجی داده‌­ها در طبقه خیلی زیاد برابر با 67.86 درصد و برای طبقه خیلی کم این عدد برابر با صفر می­‌باشد. بنابراین هیستوگرام مربوطه تاییدکننده روش نسبت فراوانی در تهیه نقشه حساسیت سیل در منطقه مورد پژوهش می­‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Flood susceptibility and probability mapping using frequency ratio ‎method in Pol-Doab Shazand Watershed

نویسندگان [English]

  • Hamid Darabi 1
  • Kaka Shahedi 2
  • Mehdi Mardian 1

1 PhD Student, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Iran‎

2 Associate ‎Professor‎, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Iran

چکیده [English]

Because of data lacking in the most of watersheds, many researchers applied spatial analysis in GIS environment to study the hydrological and flooding condition. This study aims to map flood susceptibility through frequency ratio technique using some parameters such as digital elevation technique, slope, curvature, topographic wetness index, stream power index, average rainfall, distance from river, geology, soil type and land use in Pole-Doab, Shazand Watereshed, Makazi Province, Iran. First, digital map of all of the parameters were prepared based on raster format using Arc GIS 10.1 and SAGA GIS2 softwares. To prepare land-use map IRS-1C satellite image, ENVI 4.8 software and maximum likelihood algorithm were applied. Then flood inventory map was produced by mapping 95 flood prone locations in the study area using documented information on the May-2003, May-2004 and March-2004 floods. These 95 locations divided into two groups including 67 points (70%) and 28 points (30%) for calibration and validation, respectively. For calibration, flood prone locations defined as dependent variable and ten parameters that are affecting flooding condition were introduced to frequency ratio as independent variables. Then flood probability was determined for each class of each parameter. Finally, obtained weights for each class in GIS were implemented in corresponding layers and using the overlay algorithm, susceptibility and probability maps were prepared. Based on the susceptibility map, study area was divided into 5 classes as very high, high, medium, low and very low sensitivity. The findings of the assessment of frequency ratio histogram  indicated  that the likelihood of very high and very low flooding classes are equal to 67.86 and zero percent, respectively. Therefore, the obtained frequency ratio histogram confirms the adequacy of the implemented method in flood susceptibility and probability mapping for the case study.

کلیدواژه‌ها [English]

  • Arc GIS
  • Frequency Ratio
  • Histogram
  • maximum likelihood
  • SAGA GIS 2‎
  1. Amini, J. 2010. Computer processing of remotely sensed images. Tehran University Press, 576 pages (in Persian).
  2. Azari, M., H.R. Sadeghi and A. Telvari. 2009. Determining of sub-watershed contribution in peak flows and runoff volume in to prioritize in flood control. Geography and Development Iranian Journal, 12: 199-213 (in Persian). 
  3. Besharati, R. 2007. Prioritization of areas prone to flooding using in rainfall-runoff simulation HEC-HMS model in Roodak Watershed. MSc Thesis, University of Agriculture and Natural Resources of Sari, 116 pages (in Persian). 
  4. Darabi, H., K. Shahedi, K. Solaimani and M. Miryaghoubzadeh. 2014. Prioritization of sub-watersheds based on flooding conditions using hydrological model, multivariate analysis and remote sensing technique. Water and Environment Journal, 28(3): 382-392. 
  5. Darabi, H., K. Solaimani and S. Faryadi. 2011. The effects of physiographic factors on hydrological characteristics, case study: Maarch Sub-basin of Nourrood Watershed. 2nd International Symposium on Climate Change and Dendrochronology in Caspian Ecosystems, Sari University, 8 pages (in Persian). 
  6. Greenwood, J.B., G. Schoups, E.d. Campbell and N.J.L. Patrick. 2014. Bayesian scrutiny of simple rainfall–runoff models used in forest water management. Journal of Hydrology, 512: 344-365.
  7. Khosroshahi, M. and B. Saghafian. 2006. Prioritization of flooding condition, strategy for flood control and measurements in watersheds. Journal of Agricultural Sciences and Natural Resources, 2: 12-19 (in Persian).
  8. Kheyrizadeh, M., J. Maleki and H. Amounia. 2012. Flood hazard zoning using ANP model in watershed, case study: Mardaghchay Watershed. Quantitative Geomorphological Researches, 3: 39-56 (in Persian).
  9. Knebl, M.R., Z.L. Yang, K. Hutchison and D.R. Maidment. 2005. Regional scale flood modeling using NEXRAD rainfall, GIS and HEC-HMS/RAS, a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75: 325-336.

10. Miller, S.N., W.G. Kepner, M.H. Mehaffey, M. Hernandez, R.C. Miller and D.C. Goodrich. 2002. Integrating landscape assessment and hydrologic model for land cover change analysis. Journal of the American Water Resources Association, 38: 915-926. 

11. Mohammad Esmaeil, Z. 2011. Monitoring land use changes in Karaj using remote sensing. Soil and Water Research Institute (Soil and Water Sciences), 24: 81-88 (in Persian).

12. Morelli, S., A. Battistini and C. Filippo. 2014. Rapid assessment of flood susceptibility in urbanized rivers using digital terrain data: Application to the Arno river case study, Firenze, northern Italy. Applied Geography, 54: 35-53.

13. Pourghasemi, H.R., H.R. Moradi, S.M. Fatemi Aghdas, C. Gokceoglu and B. Pradhan. 2012. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Journal of Geosciences, 7: 1857-1878.

14. Pradhan, B. 2009. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology, 9: 1-18.

15. Pradhan, B., U. Hagemann, M. Tehrany Shafapour and N. Prechte. 2014. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers and Geosciences, 63: 34-43.

16. Rohani, H., M. Mohseni Saravi and A. Malekian. 2005. Identify the most important climate and morphometry factors affecting peak flow and preparing regression model of the east and north-east of Iran. Journal of Agricultural Sciences and Natural Resources, 3: 99-108 (in Persian).

17. Roughani, M., M. Ghafouri and M. Tabatabaei. 2007. An innovative methodology for the prioritization of sub-catchments for flood control. International Journal of Applied Earth Observation and Geoinformation, 9: 79-87.

18. Saghafian, B., H. Farazjoo, H. Sepehri and E. Najafzade. 2007. Assessment of land use changes on flooding condition in Golestan dam Watershed. Iran-Water Resources Research, 2: 18-28 (in Persian).

19. Tehrany Shafapour, M., B. Pradhan and M.N. Jebur. 2013. Spatial prediction of flood susceptible areas using rule based Decision Tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504: 69-79.

20. Tehrany Shafapour, M., B. Pradhan and M.N. Jebur. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512: 332-343.

21. Tehrany Shafapour, M., B. Pradhan, Sh. Mansor and A. Noordin. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125: 91-101.

22.Varvani, J. 2001. Regional analysis of suspended sediment using regression equations in the Gorganroud Watershed. MSc thesis, University of Tehran, 120 pages.