با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری آبخیزداری، گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 کارشناس آبخیزداری اداره کل منابع طبیعی و آبخیزداری استان البرز، البرز، ایران

3 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

4 معاون آبخیزداری اداره کل منابع طبیعی و آبخیزداری استان البرز، البرز، ایران

چکیده

مقدمه
شناخت نواحی مستعد وقوع زمین‌‌‌لغزش و خطرات ناشی از آن، یکی از اقدامات اولیه در مدیریت منابع طبیعی و برنامه‌‌‌ریزی‌‌های توسعه‌‌ای و عمرانی است. با توجه به تلفات جانی، خسارات مالی و تاثیرات ‌‌محیط زیستی، زمین‌‌لغزش یکی از مهم‌ترین بلایای طبیعی در جهان و به‌‌‌ویژه در ایران بوده است که هر ساله نقش به‌‌سزایی در تخریب جاده‌‌های ارتباطی، تخریب مراتع، باغ‌ها، مناطق مسکونی، ایجاد فرسایش و تولید حجم بالای رسوب در حوزه‌‌های آبخیز کشور دارد. این مسایل منجر به استفاده از مدل‌‌های داده‌کاوی در مطالعات زمین‌‌شناسی و ژئوتکنیک شده است. در سال‌‌های اخیر، بهره‌گیری از سامانه اطلاعات جغرافیایی و سنجش از دور، همراه با روش‌‌های یادگیری ماشینی گامی نو در پهنه‌‌بندی وقوع زمین‌لغزش ایجاد کرده است و نقشه‌‌های حساسیت وقوع زمین‌‌لغزش با دقت مناسب و قابل قبولی تهیه می‌‌شوند. حوزه آبخیز سد کرج، به‌دلیل شرایط کوهستانی و پرباران و ساخت‌‌وسازهای فراوان به‌دلیل شرایط آب و هوایی مناسب و جاده‌‌‌سازی‌‌های غیراصولی از جمله مناطق مستعد وقوع زمین‌‌لغزش است. هدف از این پژوهش، اولویت‌‌بندی عوامل موثر بر زمین‌لغزش با استفاده از مدل بیشینه آنتروپی (مدل MaxEnt) و تعیین مناطق دارای پتانسیل حساسیت زمین‌‌‌لغزش است.
مواد و روش‌‌‌ها
حوزه آبخیز سد کرج، در شرق استان البرز و بین مختصات جغرافیایی بین 35 درجه و 51 دقیقه تا 36 درجه و 13 دقیقه عرض شمالی و 51 درجه و 5 دقیقه تا 51 درجه و 35 دقیقه طول شرقی، واقع شده است. بیشترین و کمترین مقدار بارندگی متوسط سالانه به‌ترتیب در معادل 1099 و 608 میلی‌‌متر محاسبه شده است. در پژوهش حاضر، برای تعیین مناطق دارای حساسیت زمین‌‌‌لغزش از 11 عامل موثر بر پتانسیل زمین‌‌لغزش منطقه شامل ارتفاع، شیب، جهت شیب، فاصله از آبراهه، سنگ‌شناسی، بارندگی، کاربری اراضی، شاخص رطوبت توپوگرافی، انحنا سطح، فاصله از آبراهه و فاصله از جاده انتخاب و آزمون هم‌‌‌خطی عوامل با آزمون عامل تورم واریانس (VIF) در نرم‌‌افزار SPSS بررسی شد. از مجموع 477 زمین‌لغزش، به‌صورت تصادفی، 70 درصد به‌عنوان داده‌‌های آزمون (334 نقطه) و 30 درصد به‌عنوان داده‌‌های اعتبارسنجی (143 نقطه) طبقه‌بندی شدند. در این پژوهش، از مدل بیشینه آنتروپی استفاده شده است. برای تعیین مهم‌ترین پارامترها از نمودار جکنایف و از منحنی تشخیص عملکرد نسبی (ROC) برای قدرت پیش‌‌بینی مدل استفاده شد. نقاط زمین‌‌‌لغزش حوضه مورد مطالعه از بانک اطلاعاتی اداره کل منابع طبیعی و آبخیزداری استان البرز و بازدیدهای میدانی تهیه شده است.
نتایج و بحث
نتایج نشان داد که هم‌‌خطی بین عوامل مورد استفاده وجود ندارد. بر اساس نمودار جکنایف لایه‌‌های بارندگی، فاصله از جاده، لیتولوژی و کاربری اراضی، به‌ترتیب مهم‌ترین عوامل تاثیرگذار بر وقوع زمین‌‌لغزش در منطقه مورد مطالعه بودند. منحنی تشخیص عملکرد نسبی، نشان‌دهنده دقت 90 درصد (عالی) روش بیشینه آنتروپی در مرحله آموزش و 83 درصد (خیلی خوب) در مرحله اعتبارسنجی بود. بر اساس نقشه نهایی حساسیت زمین‌‌‌لغزش بیش از 35 درصد از پهنه حوضه مورد مطالعه دارای پتانسیل حساسیت زمین‌‌‌لغزش زیاد و خیلی زیاد است.
نتیجه‌‌گیری
با توجه به نتایج به‌دست آمده می‌‌توان گفت که مدل MaxEnt، توانایی بالایی در تعیین مناطق دارای حساسیت زمین‌‌لغزش دارد و با توجه به سرعت و دقت بالای مدل پیشنهاد می‌شود که در تحقیقات مشابه به‌خصوص در کشورهای در حال توسعه به‌دلیل کمبود امکانات و منابع مالی و همچنین، زمان‌‌بر بودن شناسایی مناطق دارای حساسیت زمین‌‌لغزش مورد استفاده قرار بگیرد. علاوه‌‌بر عوامل طبیعی برخی عوامل انسانی نظیر جاده‌‌سازی، نقش مهمی بر وقوع زمین‌‌لغزش دارد که برای کاهش نسبی خطرات لازم است از تغییر اکوسیستم به‌عنوان محرک بلایای طبیعی اجتناب کرد. به‌طور کلی، می‌‌توان بیان کرد که حوزه آبخیز سد کرج دارای پتانسیل حساسیت زمین‌‌‌لغزش بالایی است که بیشتر مناطق دارای حساسیت در نزدیکی جاده‌‌ها واقع شده‌‌اند و به‌دلیل اینکه در این مناطق دخالت‌‌های انسانی فراوانی صورت گرفته است، حساسیت زمین‌‌لغزش افزایش پیدا کرده است. ترکیب سامانه اطلاعات جغرافیایی با روش‌‌ بیشینه آنتروپی به‌‌منظور تعیین مناطق دارای حساسیت زمین‌‌لغزش مخصوصا در کشورهای در حال توسعه مثل ایران که دسترسی به اطلاعات و داده‌های زمین‌‌لغزش با محدودیت زمان و هزینه مواجه هستند، پیشنهاد می‌‌‌شود. نتایج این پژوهش در تصمیم‌‌گیری و آمایش سرزمین استانی و همچنین برنامه‌‌ریزی شهری قابل استفاده خواهد بود و نقش به‌سزایی در پیشگیری و کاهش خسارات ناشی از وقوع زمین‌‌لغزش خواهد داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Prioritization of factors and zoning susceptibility of landslide in Karaj Dam Watershed

نویسندگان [English]

  • Omid Asadi Nalivan 1
  • Majid Rahmani 2
  • Farzaneh Vakili tajareh 3
  • Asghar Bayat 4

1 PhD Graduated Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Watershed Management Expert of Alborz Province Natural Resources and Watershed Management Department, Alborz, Iran

3 Ph.D student in Watershed Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran

4 Deputy of Watershed Management of Alborz Province Natural Resources and Watershed Management, Alborz, Iran

چکیده [English]

Introduction
Identification of the areas prone to landslides and the risks arising from them is one of the primary measures in natural resource management and development and construction planning. Considering the loss of lives, financial losses and environmental effects, landslides have been one of the most important natural disasters in the world and especially in our country, which every year plays an increasing role in the destruction of communication roads, pastures, gardens, residential areas, cause erosion and produces a high volume of sediment in the watersheds of the country. These issues have led to the use of data mining models in geological and geotechnical studies. In recent years, the use of geographic information systems and remote sensing along with machine learning methods has created a new step in landslide occurrence zoning and landslide susceptibility maps with appropriate accuracy. The watershed of Karaj Dam is one of the areas prone to landslides due to mountainous and rainy conditions and many construction due to suitable weather conditions and non-standard road construction. The purpose of this research is to prioritize the factors affecting landslides using the maximum entropy model (MaxEnt model) and to determine areas with landslide susceptibility potential.
Materials and methods
The Karaj Dam watershed is located in the east of Alborz Province. The highest and lowest average annual rainfall is calculated as 1099 and 608 mm, respectively. In this research, in order to determine the areas with landslide susceptibility, among 11 factors affecting the landslide potential of the area, including height, slope, slope direction, distance from waterway, lithology, rainfall, land use, topographic moisture index, surface curvature, distance from the waterway and the distance from the road, the factors were selected and tested for collinearity with the Variance Inflation Factor (VIF) test in SPSS software. From the total of 477 landslides, 70% were randomly classified as test data (334 points) and 30% as validation data (143 points). In this research, the maximum entropy model is used. To determine the most important parameters, the jackknife diagram and the Relative Performance Detection Curve (ROC) were used to determine the predictive power of the model. Landslide points of the studied area were prepared from the database of the General Directorate of Natural Resources and Watershed Management of Alborz Province and field visits.
Results and discussion
The results showed that there is no co-linearity between the used factors. According to the Jackknife diagram, rainfall layers, distance from the road, lithology and land use were respectively the most important factors influencing the occurrence of landslides in the study area. The relative performance detection curve showed the accuracy of 90% (excellent) of the maximum entropy method in the training phase and 83% (very good) in the validation phase. According to the final landslide susceptibility map, more than 35% of the study area has high and very high landslide susceptibility potential.
Conclusion
According to the obtained results, it can be said that the MaxEnt model has a high ability to determine landslide-susceptible areas, and due to the high speed and accuracy of the model, it is suggested that it be used in similar research, especially in developing countries. The reason for the lack of facilities and financial resources, as well as the time-consuming nature of identifying landslide sensitive areas, should be used. In addition to natural factors, some human factors such as road construction play an important role in the occurrence of landslides, and in order to reduce the relative risks, it is necessary to avoid changing the ecosystem as a driver of natural disasters. In general, it can be stated that the watershed of Karaj Dam has a high potential for landslide susceptibility, that most of the susceptible areas are located near roads, and because there are many human interventions in these areas. Landslide sensitivity has increased. It is suggested to combine geographic information systems with maximum entropy method in order to determine areas with landslide susceptibility, especially in developing countries like Iran, where access to landslide information and data is limited by time and cost. The results of this research can be used in decision-making and preparation of provincial land as well as urban planning and will play a significant role in preventing and reducing damage caused by landslides.
 

کلیدواژه‌ها [English]

  • Amir Kabir Dam
  • Machine learning
  • Mass movement
  • Maximum entropy
  • ROC
Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B. 2016. Landslide susceptibility mapping using an ensemble statistical index (Wi) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 75(7), 553-563.
Amir Ahmadi, A., Naemi Tabar, M., Gholkar, B. 2017. Prioritize and zoning factors affecting the landslide model entropy, case study: Bajgiran, Ghochan. Hydrogeomorphol. 3(11), 105-125 (In Persian).
Arulbalaji, P., Padmalal, D., Sreelash, K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. J. Sci. Rep. 9, 2082.
Bui, T.D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B., Panahi, M., Hong, H., Tian, Y. 2018. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sens.  10(1527), 1-32.
Chen, W., Zhang, S., Li, R., Shahabi, H. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Sci. Total Environ. 644, 1006-1018.
Deng, F., Deng, Z., Lv, D., Wang, D., Duan, H., Xing, Z. 2016. Application of remote sensing and GIS analysis in groundwater potential estimation in west Liaoning Province, China. J. Eng. Res. 43, 1–17.
Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B., Shadman, M., Yari, A., Tian, Y., Bui, D. 2019. Landslide susceptibility assessment at the Wuning area, China: a comparison between multi‑criteria decision making, bivariate statistical and machine learning methods. Nat. Hazards 96, 173-212.
Kadavi, P., Lee, C.W., Lee, S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 10(8), 1252.
Kerekes, A.H., Poszet, S.L., Gal, A. 2018. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Rev. Geomorfol. 20, 130-146.
Koehorst, B.A.N., Kjekstad, O., Patel, D., Lubkowski, Z., Knoeff, J.G., Akkerman, G.J. 2005. Workpackage 6 determination of socio-economic impact of natural disasters. Assessing socioeconomic Impact in Europe, 173 pages.
Kornejady, A., Ownegh, M., Bahremand, A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 152, 144-162.
Miller. J.R., Ritter, D.F., Kochel, R.C. 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. Am. J. Sci. 290, 569-599.
Mirzaei, G., Soltani, A., Soltani, M., Darabi, M. 2018. An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environ. Earth Sci. 77, 581.
Muniraj, K., Jesudhas, C.J., Chinnasamy, A. 2019. Delineating the groundwater potential zone in Tirunelveli Taluk, South Tamil Nadu, India, using remote sensing, Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sci.
Nachappa, T.G., Tavakkoli, S., Gholamnia, Kh. Ghorbanzadeh, O., Rahmati, O., Blaschke, T. 2020.  Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 590, 125275.
Naghibi, S.A., Moghaddam, D., Kalantari, B., Pradhan, B., Kisi, O. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 548, 471-483.
Nguyen, V.T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.A., Tran, V.P., Nuyen, D.H., Malek, M.A., Amini, A., Prakash, I., Ho, L.S., Pham, B.T. 2019. GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: a case study at Da Lat City, Vietnam. Sustainability 11, 7118.
Pandey, V.K., Pourghasemi, H.R., Sharma, M.C. 2018. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto Int. 35(2), 168-187.
Park, N.W. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ. Earth Sci. 73, 937-949.
Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
Pourghasemi, H.R., Rossi, M. 2016. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods.               Theor. Appl. Climatol. 1-25.
Salarian, T., Zare, M., Jouri, M.H., Miarrostami, S., Mahmoudi, M. 2014. Evaluation of shallow landslides hazard using artificial neural network of multi-layer perceptron method in Subalpine Grassland, case study: Glandrood Watershed Mazandaran. Int. J. Agric. Sci. 7(11), 795-804.
Teimouri, M., Asadi Naivan, O. 2020. Susceptibility zoning and prioritization of the factors affecting landslide using MaxEnt, geographic information system and remote sensing models, case study: Lorestan Province. Hydrogeomorpholoy 6(21), 155-179.
Toll, D.G. 1996. Artificial intelligence applications in geotechnical engineering. Electron. J. Geotech. Eng. 27 pages.
Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z., Al-Katheeri, M.M. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5), 839-856.
Zhang, T., Han, L., Han, J., Li, X., Zhang, H., Wang, H. 2019. Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model. Entropy 21(218), 1-23.