با همکاری انجمن آبخیزداری ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان، ایران

2 دانشآموخته کارشناسی ارشد، دانشگاه ولی عصر رفسنجان، ایران

3 استادیار پژوهش، پژوهشکده پسته، موسسه تحقیقات و علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان، ایران

4 پژوهشگر ارشد موسسه مدیریت منابع برلین، آلمان

چکیده

مقدمه
مدلSWAT، یک ابزار مناسب برای شبیه‌سازی فرایندهای هیدرولوژیکی است. این مدل به ورودی‌های زیادی نیاز دارند که غالبا به‌صورت مستقیم قابل اندازه‌گیری نیستند و یکی از اصلی‌ترین منابع عدم قطعیت در این مدل‌ها محسوب می‌شود. فرایند واسنجی می‌تواند با تعدیل و تطبیق این ورودی‌ها موجب کاهش عدم قطعیت در نتایج مدل شود. پژوهش‌ها نشان دادند که واسنجی یک مدل هیدرولوژیکی با استفاده از الگوریتم‌های متداول واسنجی خودکار رزومه، دقت مناسبی در پیش‌بینی متغیرهای هیدرولوژیکی در دوره اعتبار‌سنجی به وجود نخواهد آورد. لذا، به‌منظور واسنجی مدل SWAT از الگوریتم PSO استفاده شد. از آنجا که هیچ قانون ریاضی و منطقی برای تعیین بهترین ترکیب پارامترهای الگوریتم PSO وجود ندارد و این ترکیب‌ها به اساس آزمون و خطا و از میان ترکیب‌های بسیار متنوع انتخاب می‌شوند، لذا، روش‌های مبتنی بر آزمون و خطا بسیار وقت‌گیر و گاهی غیر‌ممکن است. در این پژوهش، از روش تاگوچی برای تعیین بهترین ترکیب حاصل از پارامترهای الگوریتم PSO مورد استفاده قرار گرفت.
مواد و روش‌‌ها
در این پژوهش، قابلیت استفاده از مدل SWAT برای شبیه‌سازی رواناب ماهانه در حوزه آبخیز جوانمردی، از زیرحوضه‌های اصلی حوزه آبخیز لردگان با مساحت 380 کیلومتر مربع بررسی شد. در این پژوهش، پارامترهای الگوریتم PSO شامل تعداد شبیه‌سازی ‌(A)، تعداد تکرار ‌(B)، وزن محاسبه سرعت ‌(C) و پارامتر حرکت (D)، در چهار سطح تعریف شدند. سپس این پارامترها، مطابق آزمایش‌های موجود در آرایه متعامد L16 (با استفاده از روش طراحی آزمایش‌های تاگوچی)، طراحی و اجرا شدند. مقیاس عملکردی مورد استفاده برای ارزیابی الگوریتم‌ها، RPD (درصد انحراف نسبی) انتخاب شد. با توجه به ماهیت متغیر پاسخ در این پژوهش، برای تحلیل نتایج آزمایش تاگوچی از شاخص S/N "هر‌چه کمتر، بهتر" استفاده شد. مرحله انتخاب آرایه‌ها و محاسبات در نرم‌افزار Minitab 16 انجام گرفت.
نتایج و بحث
در مرحله تحلیل حساسیت که پیش از واسنجی مدل انجام شد، از میان 28 پارامتر مورد بررسی در این پژوهش، مدل نسبت به تغییرات 22 پارامتر حساسیت نشان داده و به‌عنوان متغیرهای اثرگذار بر شبیه‌سازی رواناب در حوزه آبخیز جوانمردی مشخص شدند. نتایج نشان داد که پارامتر عدد منحنی راواناب (CN)، مهمترین عامل و پارامترهای جرم مخصوص ظاهری خاک در حالت مرطوب (SOL_BD) و متوسط آب قابل استفاده به‌وسیله گیاه (SOL_AWC) به‌ترتیب در زمره مهمترین عوامل کنترل‌کننده دبی جریان در حوضه مطالعاتی هستند. بر اساس نتایج شبیه‌سازی شده به‌وسیله الگوریتم PSO مشخص شد که مدل SWAT دقت قابل قبولی برای برآورد رواناب ماهانه در منطقه مورد مطالعه دارد. به‌طوری‌‌که در مرحله واسنجی شاخص‌های r-factor و p-factor به‌ترتیب 1.23 و 0.88 و ضرایب تبیین و نش-‌ساتکلیف نیز به‌ترتیب برابر 0.77 و 0.75 بودند. در مرحله اعتبارسنجی نیز شاخص‌های r-factor و p-factor به‌ترتیب 1.31 و 0.84 و ضرایب تبیین و نش-‌ساتکلیف نیز به‌ترتیب برابر 0.72 و 0.73 بودند. در این پژوهش، بهترین ترکیب حاصل از کاربرد روش تاگوچی برای پارامتر‌های تعداد شبیه‌سازی، تعداد تکرار، وزن محاسبه سرعت و پارامترهای مناسب در الگوریتم PSO به‌ترتیب 40، 100، 0.2 و 0.15 (A4B4C4D3) تعیین شد.
نتیجه گیری
نتایج گویای این است که مدل SWAT، دقت قابل قبولی برای برآورد رواناب ماهانه در حوزه آبخیز جوانمردی داشته، روش PSO الگوریتم موثری در واسنجی و تعیین عدم قطعیت مدل در این حوضه بوده است. همچنین، استفاده از روش طراحی آزمایش‌ها تاگوچی، راهی مناسب برای تعیین بهترین ترکیب پارامترهای الگوریتم PSO برای محققانی است که از این روش برای بهینه‌سازی مدل SWAT استفاده می‌کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of SWAT model by combining PSO evolutionary algorithm and Taguchi method

نویسندگان [English]

  • Hossain shirani 1
  • Anis Asadi 2
  • ُSomayeh Sadr 3
  • Ali Asghar besalatpour 4
  • Isa esfandiarpoor 1

1 Professor, Department of Soil Sciences, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan, Iran

2 MSc Graduated, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

3 Research Assistant, Pistachio Research Center, Horticulture Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran

4 Senior Researcher, Institute of Resource Management, Berlin, Germany

چکیده [English]

Introduction
SWAT model is a suitable tool for simulating hydrological processes. This model requires many inputs that often cannot be measured directly and is considered one of the main sources of uncertainty in these models. The recalibration process can reduce the uncertainty in the model results by adjusting and adapting these inputs. The researches showed that calibrating a hydrological model by using the common automatic CV calibrating algorithms will not provide proper accuracy in the prediction of hydrological variables during the validation period, so PSO algorithm was used to calibrate the SWAT model. Since there is no mathematical and logical rule to determine the best combination of PSO algorithm parameters and these combinations are selected based on trial and error and among many different combinations, therefore trial and error based methods are very time-consuming and sometimes impossible. In this research, Taguchi method was used to determine the best combination of PSO algorithm parameters.
Materials and methods
In this research, the ability to use the SWAT model to simulate monthly runoff in the Javanmardi Watershed, one of the main sub-basins of the Lordegan Watershed with an area of 380 square kilometers, was investigated. In this study, the PSO algorithm parameters, including the number of simulations (A), the number of repetitions (B), the speed calculation weight (C) and the movement parameter (D), were defined in four levels. Then, these parameters were designed and implemented according to the experiments in the L16 orthogonal array (using the Taguchi experiments design method). The performance scale used to evaluate the algorithms was RPD (Relative Percentage Deviation). Considering the variable nature of the response in this study, the S/N index "the lower the better" was used to analyze the Taguchi test results. The selection of arrays and calculations were done in Minitab 16 software.
Results and discussion
In the sensitivity analysis stage, which was performed before the model recalibration, among the 28 parameters studied in this research, the model showed sensitivity to the changes of 22 parameters, and they were identified as variables influencing the simulation of runoff in Javanmardi Watershed. The results showed that the parameter of the runoff curve number (CN) is the most important factor and the parameters of soil apparent density in the wet state (SOL_BD) and average water usable by the plant (SOL_AWC) are among the most important factors controlling the flow rate in the study basin, respectively. Based on the results simulated by the PSO algorithm, it was found that the SWAT model has an acceptable accuracy for estimating the monthly runoff in the study area. So, in the recalibration phase, the r-factor and p-factor indices were 1.23 and 0.88, respectively, and the explanatory and Nash-Sutcliffe coefficients were 0.77 and 0.75, respectively. In the validation stage, the r-factor and p-factor indexes were 1.31 and 0.84, respectively and the explanatory and Nash-Sutcliffe coefficients were 0.72 and 0.73, respectively. In this study, the best combination resulting from the application of Taguchi method for the parameters of the number of simulations, the number of repetitions, the speed calculation weight and the appropriate parameters in the PSO algorithm were determined as 40, 100, 0.2 and 0.15 respectively (A4B4C4D3).
Conclusion
The results show that the SWAT model has an acceptable accuracy for estimating the monthly runoff in the Jawanmardi Watershed, and the PSO method is an effective algorithm in calibrating and determining the uncertainty of the model in this basin, and the use of the Taguchi test design method is a suitable way to determine the best combination of PSO algorithm parameters is for researchers who use this method to optimize the SWAT model.
 

کلیدواژه‌ها [English]

  • Javanmardi watershed
  • Particle swarm algorithm
  • Simulation
  • Uncertainty
Abbaspour, K. 2014. SWAT-CUP2012: SWAT calibration and uncertainty programs version 5.1–A user manual. Department of Systems Analysis Integrated Assessment and Modelling (SIAM) Eawag Swiss Federal Institute of Aquatic Science and Technology. Duebendorf Switzerland.
Abbaspour, K. 2011. SWAT-CUP2: SWAT calibration and uncertainty programs version 2: A user manual. Department of Systems Analysis Integrated Assessmentand Modelling (SIAM) Eawag Swiss Federal Institute of Aquatic Science and Technology Duebendorf Switzerland
Arnol, J., Muttiah, R.S., Srinivasan, R., Allen, P. 2000. Regional estimation of base flow and groundwater recharge in the upper Mississippi River Basin. J. Hydrol. 227, 21-40.
Ayele, G.T., Teshale, E.Z., Yu, B., Rutherfurd, I.D., Jeong, J., 2017 Streamflow and sediment yield prediction for watershed prioritization in the upper Blue Nile River Basin Ethiopia. Water 9(10), 782.
Behnamian, J., Zandieh, M., 2011. A discrete colonial competitive algorithm for hybrid flowshop. Scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl. 38, 14490-14498.
Besalatpour, A.A., Ayoubi, S.A., Hajabbasi, M.A., Jalalian, A. 2015. Calibration and validation of SWAT model using PSO algorithm for the simulation of runoff and sediment in a mountainous watershed with limited climate data.‏ Electronic J. Soil Manage. Sustain. Produc. 4(4), 295-312.
Besalatpour, A.A. 2012. Modelling of soil erosion hazard in the Bazoft Watershed using fuzzy logic algorithm SWAT model and Fuzzy Clustering-Genetic algorithm. PhD thesis in Soil Science. Faculty of agriculture, Isfahan University of Technology (in Persian).
Beven, K.J. 2011. Rainfall-runoff modelling: the primer 2th. John Wiley & Sons Ltd. Chichester.
Das, A., Majurmder, A., Kr-Das, P. 2014. Detection of apposite PSO parameters using Taguchi based grey relational analysis: optimization and implementation aspects on manufacturing related problem. Procedia Materials Sci. 6, 597-604.
Eberhart, R., Kennedy, J. 1995. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Sixth International Symposium on Micro Machine and Human Science Nagoya Japan.
Faramarzi, M., Abbaspour, K.C., Schulin, R., Yang, H. 2009. Modelling blue and green water resources availability in Iran. Hydrol. Proces. 23, 486-501.
Ficklin, D.L., Luo, Y., Luedeling, E., Zhang, M. 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 374, 16-29.
Gan, Y., Duan, Q., Gong, W., Tong, Ch., Sun, Y., Chu, W., Ye, A., Miao, C., Di, Zh. 2014. A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environ. Model. Soft. 51, 269-285.
Ghaffari, G., Keesstra, S., Ghodousi, J., Ahmadi, H., 2010. SWAT‐simulated hydrological impact of land‐use change in the Zanjanrood Basin Northwest Iran. Hydrol. Proces. 24, 892-903.
Hargreaves, G.H., Samani, Z.A. 1985. Reference crop evapotranspiration from temperature. Appli. Engin. Agri. 1(2), 96-99.
Kechagias, J.D., Aslani, K.E., Fountas, N.A., Vaxevanidis, N.M., Manolakos, D.E., 2020. A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titaniumalloy. Measurement 151, 107213.‏
Kennedy, J., Eberhart, R.C. 1995. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks IV Piscataway NJ: IEEE Press, 1942-1948.
McCarthy, G.T. 1938. The unit hydrograph and flood routing. New London Conference North Atlantic Division. US Army Corps of Engineers. New London. Conn. USA.
Mohammadi, S., Baloueib, F., Hajic, Kh., Khaledi Darvishancand, A., Karydas, C.G. 2021. Country-scale spatio-temporal monitoring of soil erosion in Iranusing the G2 model. Int. J. Digital Earth 14(8), 1019-1039.
Morgan, R.P.C., Nearing, M.A. 2011. Handbook of erosion modelling. John Wiley & Sons Ltd 413p.
Nash, J., Sutcliffe, J. 1970. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 10, 282-290.
Nasiri, S., Ansari, H., Ziaei, A.N. 2020. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 13(11), 1-15.
Neitsch, S., Arnold, J., Kiniry, J., Williams, J. 2011. Soil and water assessment tool: theoretical documentation version 2009. Texas Water Resource Institute USA.
Rahman, K., Maringantic, H., Beniston, M., Widmer, F., Abbaspour, K., Lehmann, A. 2013. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the upper Rhone River Watershed case in Switzerland. Water Resour. Manage. 27(2), 323-339.
Sun, L., Nistor, I.,  Seidou, O. 2015. Streamflow data assimilation in SWAT model using Extended Kalman Filter. J. Hydrol. 531, 671-684.‏
Sadeghi, S.H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. J. Hydrol. 448, 174-180.
Sadr, S., Mozafari, V., Shirani, H., Alaei, H., Tajabadi Pour, A., Rajabi Behjat, A. 2020. Control of pistachio endocarp lesion by optimizing the concentration of some nutrients using taguchi method. Scie. Horticul. 256, 108575.
Schaefli, B., Gupta, H.V. 2007. Do nash values have value? Hydrol. Process. 21, 2075-2080.
Shirani, H., Habibi, M., Besalatpour, A.A., Esfandiarpour, I.  2015. Determining the features influencing physical quality of calcareous soils in a semiarid region of Iran using a hybrid PSO-DT algorithm. Geoderma, 259, 1-11.
Singh, R.K., Panda, R.K., Satapathy, K.K., Ngachan, S.V. 2012. Runoff and sediment yield modelling for a Treated hilly watershed in eastern Himalaya using the Water Erosion Prediction Project Model. Water Resour. Manage. 26, 643-665.
Taguchi, G., Konishi, S. 1987. Taguchi methods orthogonal arrays and linear graphs: tools for quality engineering. American Supplier Institute Dearborn Michigan.
Taguchi, G. 1987. Taguchi design method. J. Material. Process. Technol. 184, 233-239.
Tang, X., Zhang, X., Wang, G., Jin, J., Liu, C., Liu, Y., He, R., Bao, Z. 2021. Uncertainty analysis of SWAT modeling in the Lancang River Basin Using Four Different Algorithms. Water. 13(3), 341.‏
Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., Yang, H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 358, 1-23.
Yang, Q., Meng, F.R., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P.A. 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agricul. Ecosys. Environ. 132, 23-31.